Band Protocol and Chainlink: A Comparative Analysis

Data Quality

  • Band: BandChain only initially supports free, low-quality APIs, whereas paid, password-protected API support is still largely theoretical. Thus, developers cannot just call any password-protected API they desire. Their proposed plan is to require data providers to change their entire business model to accept on-chain cryptocurrency payments, drastically limiting the data available to users.
  • Chainlink: Natively supports connection to any data source API live in production today, including free open APIs, paid authenticated APIs, and proprietary private APIs. This is all made available through modular external adapters that can be created and hosted by anyone without requiring any additional support from the Chainlink team or data providers themselves.

Reliance on Randomness

  • Band: Built randomness as a core component of the protocol; it’s the required method for choosing oracle nodes, despite the feature not being supported by any original academic research. Not only does it severely limit data accessibility (every node must have access to the same data) and network security (must trust every node), but the team is largely incompetent on the subject, as they were caught trying to copy Chainlink VRF on their Github repo.
  • Chainlink: Does not include randomness as a core part of the protocol, ensuring users have high levels of flexibility and quality control mechanisms for choosing nodes and connecting to data. They built Chainlink Verifiable Randomness Function (VRF) as a novel approach to creating a provably fair on-chain source of randomness for blockchain gaming and NFT dApps, backed by leading and original academic research.

Adoption Metrics

  • Band: Minimal usage in-production on mainnet despite Band v1 being live on Ethereum for nearly a year. Band v2 lacks core features required by users, does not have a network effect, and cannot offer any case studies showing its ability to secure a large amount of value locked in the DeFi economy.
  • Chainlink: Currently secures tens of billions of dollars in value on mainnet for top ranking DeFi projects through its numerous live Price Reference Feeds. It’s the most used oracle throughout DeFi, across blockchains, within gaming thanks to its pioneering work on VRF, and has a 400+ project integration pipeline.

Resource Efficiency and Network Design

  • Band: Their oracle is built on its own blockchain, where oracle nodes are required to perform secondary jobs of being block producers/validators of BandChain, which adds no value to the oracle’s job of data delivery. As such, nodes experience high operating costs due to growing state bloat and long sync times as time progresses.
  • Chainlink: Chainlink is not, nor will it ever be, a blockchain, so nodes only operate as oracles solely focused on data delivery and not block production/validation. Nodes are extremely lightweight and require no state processing or synchronization, allowing nodes to be spun up and utilized instantly.

Team

  • Band: The Band team is minimal in size, hasn’t produced any original academic research, and lacks any experience building distributed systems and oracles, especially ones that secure real value in-production. They have also abandoned their original design and changed their protocol numerous times.
  • Chainlink: The 40+ Chainlink team has been building oracles and presenting original academic research since 2014, and have support from top advisors like Ari Juels (former Chief Scientist of RSA), Tom Gonser (founder of DocuSign), Evan Cheng (Director of Engineering at Facebook), and more. They have stuck to their original design and expanded upon it to improve the experience for users.

Decentralization

  • Band: All data queries/responses must process through a single blockchain, BandChain, limiting the maximum throughput. Has an upper bound of 100 nodes due to the limited scalability of Tendermint BFT consensus.
  • Chainlink: An unlimited number of oracle networks can operate in parallel and run natively on any blockchain, DLT, or layer 2 solution, eliminating the need to funnel data queries/responses through any one chain. No upper bound on nodes with the coming threshold signatures and off-chain aggregation upgrades.

Multi-Chain Support

  • Band: Relies on yet to be released Cosmos IBC to natively bridge data to other blockchains. Thus, it currently only supports lite clients, which require data to be delivered by unknown third parties outside of the protocol who have zero known incentives or penalties for their performance.
  • Chainlink: Natively supports the top leading blockchains through modular external adapters, external initiators, core contract deployments, and token bridging. Nodes directly deliver their data to requesting contracts on any blockchain, minimizing hops, and ensuring timely delivery.

How it Works

Data Quality and The Range of Oracle Connections

Band

Chainlink

The Chainlink ETH/USD price feed, secured by 21 independent Chainlink nodes, is used in production by numerous leading smart contract developments to secure real value on mainnet.

Reliance on Randomness

Band

The original post made in Band’s GitHub repo
The same post after it was edited to (unsuccessfully) remove any traces of Chainlink

Chainlink

Development and Network Effects

Band

Chainlink

Ari Juels

  • Professor of Computer Science at the Jacobs Institute at Cornell Tech
  • Former chief scientist of RSA
  • Formalized Proof of Work consensus in 1999 (powers Bitcoin and Ethereum)
  • Invented Proof of Retrievability in 2014 (powers FileCoin and Sia)
  • Co-author of the Chainlink whitepaper in 2017 and only works with Chainlink
  • Co-author of the Mixicles whitepaper in 2019
  • Co-founder of The Initiative For CryptoCurrencies & Contracts (IC3)
  • 36,000 total scholarly citations

Tom Gonser

  • Founder of DocuSign, the industry-leading e-signature provider in the world
  • Joined as a business advisor to Chainlink in early 2019

Andrew Miller

  • Decentralized consensus researcher
  • Associate Professor at the University of Illinois
  • Associate Director of the Initiative for Cryptocurrencies and Contracts (IC3)
  • Board member of the Zcash Foundation and Ethereum Enterprise Alliance
  • Advisor to both Zcash and Tezos

Evan Cheng

  • Former Senior Manager at Apple
  • Director of Engineering Blockchain at Facebook
  • Co-creator of the LLVM, which generates the low-level machine code running every Apple device, as well as much of Google, Nvidia, and Intel

Hudson Jameson

  • Ethereum Core Dev and developer liaison at the Ethereum Foundation (the glue between Eth core devs and the community)

Jake Brukhman

  • Former Partner and CTO at Triton Research
  • Founder of CoinFund, one of the leading research groups focused on web 3.0 and blockchain-based infrastructure.

Brain Lio

  • CEO of Smith+Crown, a widely accepted leader in blockchain research
Chainlink’s rapidly growing ecosystem; https://chainlinkecosystem.com/ecosystem/

Resource Efficiency and Network Design

Band

Chainlink

Decentralization and Crypto-Economic Security

Band

Chainlink

Bandchain BAND (upper section) and Chainlink LINK (lower section) staking are fundamentally different in design
A video from Chainlink Co-founder Sergey Nazarov that goes into more depth about Chainlink’s service agreements framework and staking.

Approach to Blockchain Agnosticism

Band

Chainlink

Conclusion

--

--

Breaking down the information asymmetry on Chainlink, smart contracts, and the cryptocurrency ecosystem. Founded by The_Crypto_Oracle and ChainLinkGod

Love podcasts or audiobooks? Learn on the go with our new app.

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store
SmartContent

SmartContent

Breaking down the information asymmetry on Chainlink, smart contracts, and the cryptocurrency ecosystem. Founded by The_Crypto_Oracle and ChainLinkGod